H-type foliations

Fabrice Baudoin1, Erlend Grong2, Gianmarco Molino1, Luca Rizzi3

1Univ. of Connecticut, Storrs, CT, USA; 2Univ. Paris-Sud, Gif-sur-Yvette, France; 3Univ. Grenoble Alpes, Grenoble, France

Abstract

With a view toward sub-Riemannian geometry, we introduce and study H-type foliations. These structures are natural generalizations of K-contact manifolds which encompass as special cases K-contact manifolds, invariant spaces, K-contact manifolds and H-type groups. Under an horizontal Ricci curvature lower bound, we prove on those structures sub-Riemannian diameter upper bounds and first eigenvalue estimates for the sub-Laplacian. Then, using a result by Moroianu-Semmelmann, we classify the H-type foliations that carry a parallel horizontal Clifford structure. Finally, we prove an horizontal Einstein property and compute the horizontal Ricci curvature of those structures in codimension more than 2.

Background

A sub-Riemannian manifold is a smooth manifold equipped with a bracket generating distribution $H \subset TM$ and a fiber inner product g_H on H. We require the existence of a transverse totally geodesic and integrable complement V. From this, we introduce and study a new class of sub-Riemannian manifolds generalizing the H-type groups introduced by Kaplan in [5]. We call such manifolds H-type sub-Riemannian manifolds.

Proposition 1. (H-type foliations) There exists a unique metric connection ∇ on M, called the Bott connection of the foliation, such that:

1. H and V are ∇-parallel, i.e. for every $X \in \Gamma(H)$, $Y \in \Gamma(TM)$ and $Z \in \Gamma(V)$,
 \[\nabla_X Y \in \Gamma(H), \
 \nabla_X Z \in \Gamma(V). \tag{1} \]

2. The torsion T of ∇ satisfies
 \[T(H, V, H) = 0, \
 T(H, V, V) = 0. \tag{2} \]

This connection is better suited to the study of the foliation structure, as it preserves the horizontal and vertical bundles.

Claim 2. (Kaplan’s map) For $X, Y \in \Gamma(V)$ there exists a unique skew-symmetric fiber endomorphism $\sigma(X, Y) : \Gamma(H) \to \Gamma(H)$ such that
\[g_H(\sigma(X, Y)Z, W) = g_H(Z, \nabla_X W) \]
for every $Z, W \in \Gamma(H)$, where $T(H, V, W) = -V \times \nabla_X H$ is the torsion of the Bott connection.

Definition 3. (H-type sub-Riemannian Manifold) Let M be a smooth, oriented, connected, manifold of dimension $n = m + 2$ equipped with a Riemannian foliation with bundle-like metric g and totally geodesic m-dimensional leaves.

\[\langle JX, JY \rangle = |J|^{-2} \langle X, Y \rangle \tag{4} \]

we say that (M, g) is an H-type foliation.

Due to their symmetries, H-type sub-Riemannian manifolds provide an ideal framework to develop a program reducing the study of global geometric, metric, or analytic properties of the ambient space to the study of local sub-Riemannian curvature type invariants.

Main Results

Yang-Mills Property

We show that all H-type foliations are Yang-Mills; as a consequence, the sub-Laplacian of an H-type foliation satisfies a simple Bochner’s type theorem and the validity of the generalized curvature dimension inequality is only controlled by the horizontal Ricci curvature of the Bott connection.

Proposition 4. Let (M, g) be an H-type foliation such that $Ric_H \geq K g_H$ with $K \in \mathbb{R}$. Then $(M, (\mathbb{R}, g))$ satisfies the generalized curvature dimension inequality $CD(K, \mathbb{R}, n, m)$, i.e. for every $f \in \mathcal{C}^0(M)$ and $\epsilon > 0$, one has the following Bochner’s type inequality:
\[\frac{1}{2} \langle \Delta_{CD} f \rangle = \frac{1}{2} \langle \Delta_H f \rangle = \frac{1}{2} \langle \mathcal{L}_H f \rangle - \frac{1}{2} \epsilon \langle |\nabla_{\mathcal{L}_H} f| \rangle + \frac{1}{2} \epsilon \langle |\nabla_{\mathcal{L}_H} f| \rangle \]
\[\geq \frac{1}{2} \langle \Delta_H f \rangle + \left(1 - \epsilon \right) \langle |\nabla f| \rangle \]
\[\geq \frac{1}{2} \langle \Delta_H f \rangle + \left(1 - \epsilon \right) \langle \frac{1}{2} |\nabla f| \rangle. \tag{5} \]

The consequences of the generalized curvature dimension inequality have been extensively studied recently (see [1, 2, 3]), in our setting we will have

Corollary 5. Let (M, g) be a complete H-type foliation with $Ric_H \geq K g_H$ with $K \in \mathbb{R}$. We let denote by \mathcal{L}_H the sub-Riemannian (a.k.a. Carnot-Carathéodory) distance

1. If $K \geq 0$, then the metric measure space (M, d, μ) satisfies the volume doubling property and supports a 2-Poincaré inequality, i.e. there exist constants $C_P, C_V > 0$, depending only on K, m, n, for which one has for every $p \in M$ and every $\epsilon > 0$:
\[p(B(p, \epsilon)) \leq C_P \mu(B(p, \epsilon)). \tag{6} \]

2. If $K > 0$, then M is compact with a finite fundamental group and $\text{diam}(M, d) \leq 2 \sqrt{\frac{m+n}{n-m}} \frac{\mu(B)}{\mu(M)} \tag{7} \]

3. If $\text{K} > 0$, then the first non-zero eigenvalue of the sub-Laplacian $-\Delta_H$ satisfies
\[\lambda_1 \geq \frac{\pi K}{n-m} \tag{8} \]

References

