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Overview

In this thesis we explore sub-Riemannian structures arising as the
transversal distribution to a foliation.

Connections on foliations

H-type foliations

Classification of H-type submersions

Horizontal Einstein property and GCDI

Uniform comparison theorems
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Foliations

A foliation is a partition of a manifold into equivalence classes that
locally models the partition of Rn+m by submanifolds Rm.

Definition

Let M be a n + m dimensional manifold. A foliation is a disjoint
collection F of connected, immersed m-dimensional submanifolds
(called leaves) such that for each p ∈M there is a neighborhood
Up and a smooth submersion

φUp : Up → Rn

with the property that for any x ∈ Rn the set f −1(x) is either
empty or the intersection of one of the submanifolds of F with Up.
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Foliations

We can see foliations as a local splitting of the tangent bundle

TpM = Hp ⊕ Vp

where the vertical space Vp is tangent to the leaf through p ∈M.
We call the transversal distribution Hp horizontal.

It must hold that the Lie bracket

[X ,Y ] = XY − YX

of two vertical vector fields X ,Y ∈ Vp remains in Vp; we say
that V is integrable.

There is no similar restriction on the behavior of H.
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Hörmander’s condition

Rather, we insist that the horizontal distribution H be bracket
generating; that is, for every p ∈M, there exists n ∈ N such that

TpM = Span{X1(p), [X1(p),X2(p)], [X1(p), [X2(p),X3(p)]],

. . . , [X1(p), . . . , [Xn−1(p),Xn(p)] . . . ]}

with X1(p), . . . ,Xn(p) ∈ Hp.
This is equivalent to Hörmander’s condition, and implies that
control systems are locally controllable, that SDEs admit smooth
densities, and the Chow–Rashevskii theorem:

Theorem (Chow-Rashevskii)

For any p, q ∈M, there exists an almost-everywhere horizontal
curve γ connecting p to q with finite length.
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sub-Riemannian Geometry

Given a smooth manifold M, a bracket-generating distribution
H ⊆ TM, and a fiberwise inner product gH on H, we say the
triple (M,H, gH) is a sub-Riemannian manifold.

We only have a notion of length for horizontal curves almost
everywhere tangent to H.

We can see sub-Riemannian geometry as a constraint on
permissible motion.

These arise naturally in many settings; notably in physics as
mechanical problems.
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Ricci lower curvature bounds

There are many classical Riemannian results that rely on a Ricci
lower curvature bound

Ric(X ,X ) ≥ κg(X ,Y )

In particular,

Laplacian (Rauch) Comparison Theorem:

∆r ≤


(n − 1)

√
κ cot(

√
κr) κ > 0

n−1
r κ = 0

(n − 1)
√
|κ| coth(

√
|κ|r) κ < 0

Bonnet-Meyers Diameter Estimates: If κ > 0 then

diam(M) ≤ π√
κ

and the fundamental group of M must be finite.
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Riemannian Model Spaces

The results in the previous slide follow from comparisons with
models spaces; these are the spaces with constant sectional
curvature κ.These are precisely:

κ > 0, sphere Sn

κ = 0, Euclidean space Rn

κ < 0, hyperbolic space Hn

each equipped with its canonical Riemannian metric.
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Penalty Metric

On a sub-Riemannian manifold (M,H, gH) equipped with a
Riemannian extension g = gH ⊕ gV , one can consider a penalty
metric

gε = gH ⊕
1

ε
gV

There is a Gromov-Hausdorff convergence

(M,H, gε)
ε→0+

−−−→ (M,H, gH)

Unfortunately, the Ricci curvature explodes as

lim
ε→0+

Ricε(X ,Y ) =

{
+∞ X ,Y ∈ V
−∞ X ,Y ∈ H
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Models

There is still hope to understand sub-Riemannian geometry
through comparison with models.

The Heisenberg group is R3 equipped with vector fields

X = ∂x −
1

2
y∂z , Y = ∂y +

1

2
x∂z ,

setting H = Span{X ,Y } and defining gH so that X ,Y are
orthonormal.

We can equivalently see this as induced by a submersion

R ↪→ R3 → C
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Models

The Hopf fibration is the sphere S3 equipped with horizontal
distribution induced by the submersion

S1 ↪→ S3 → CP1

The Anti-de Sitter space is the hyperbolic space H3 equipped
with horizontal distribution induced by the submersion

S1 ↪→ H3 → HP1
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Connections

A map ∇ : Γ(TM)× Γ(T i ,jM)→ Γ(T i ,jM) that is linear in the
first component and a derivation in the second component, in
analogy with the directional derivative on Rn, is called a
connection on M.
Explicitly,

∇fX+YU = f∇XU +∇YU, and

∇X (fU + V ) = (Xf )U + f∇XU +∇XV .
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Levi-Civita Connection

There exists on any Riemannian manifold (M, g) a connection ∇g

uniquely defined by the properties

∇g is metric, that is
∇gg = 0

∇g is torsion-free, that is

T (X ,Y ) = ∇g
XY −∇

g
YX − [X ,Y ] = 0

This is called the Levi-Civita connection.
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Koszul Formula

For any metric connection ∇, it can be shown that

∇XY −∇g
XY = A(X ,Y )

where we define

2g(A(X ,Y ),Z ) = g(T∇(X ,Y ),Z )+g(T∇(Z ,X ),Y )−g(T∇(Y ,Z ),X ).

It follows that any metric connection is uniquely determined by a
formula for A independent of ∇.
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Adapted connections on foliations

It is of interest to understand how a connection ∇ will interact
with the structure of a foliation.
In particular,

Definition

Let (M,F) be a foliation with vertical distribution V and
transversal distribution H. If ∇ is a connection on M such that

∇XY ∈ Γ(H) for all Y ∈ Γ(H), and

∇XZ ∈ Γ(V) for all Z ∈ Γ(V),

we say ∇ is adapted to the foliation.
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Riemannian foliations

We have a few important definitions for manifolds equipped with
both a foliation and Riemannian structure.

Definition

Suppose (M, g) is a Riemannian manifold and (M,F) is a
foliation.

If the metric splits orthogonally as g = gH ⊕ gV we say
(M, g ,F) is a Riemannian foliation.

If the leaves are totally-immersed submanifolds, we say the
foliation is totally geodesic.

If the local submersions are diffeomorphisms we say the metric
is bundle-like.
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Bott Connection on foliations

Given a totally-geodesic foliation (M, g ,F) we can define the Bott
connection ∇B

∇B
XY =


prH∇

g
XY X ,Y ∈ H

prH[X ,Y ] X ∈ V,Y ∈ H
prV [X ,Y ] X ∈ H,Y ∈ V
prV∇

g
XY X ,Y ∈ V

The Bott connection is metric, but has nonvanishing torsion

TB(X ,Y ) = −prV [prHX , prHY ]

Importantly, the Bott connection is adapted to the foliation.
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Foliations inducing sR geometry

As the models indicate, many sub-Riemannian manifolds arise from
foliations.

Given a Riemannian manifold M foliated with totally-geodesic
leaves V, a choice of transversal bracket-generating
distribution H that splits the metric orthogonally as
g = gH⊕ gV will give a sub-Riemannian structure (M,H, gH).

While the vertical space V is not intrinsic to the
sub-Riemannian structure, its properties have consequences
for the sub-Riemannian structure.
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H-type foliations

Given a totally-geodesic foliation with complement (M,V,H, g)
and the associated Bott connection ∇B , one can define for each
Z ∈ V an endomorphism JZ of H by

g(JZX ,Y ) = g(TB(X ,Y ),Z )

Definition

If for all Z ∈ V, X ,Y ∈ H it holds that

g(JZX , JZY ) = ‖Z‖2g(X ,Y )

we say (M,H, g) is an H-type foliation.
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Covariant derivatives of TB

We classify H-type foliations by the behavior of the covariant
derivatives of the torsion:

We say it is Yang-Mills if the horizontal divergence

δHT
B = TrH(∇B

×T
B)(×, ·)

vanishes. This always holds, and implies a generalized
curvature dimension inequality.

We say it has horizontally parallel torsion if

∇B
HT

B = 0

We say it has completely parallel torsion if

∇BTB = 0
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Examples

Structure Torsion

Complex Type, m = 1, n = 2k

K-Contact Manifolds YM

Heisenberg Group, Hopf, Anti de-Sitter Fibrations CP

Twistor Type, m = 2, n = 4k

Twistor space over quaternionic Kähler manifold HP

Projective Twistor space CP1 ↪→ CP2k+1 → HPk HP

Hyperbolic Twistor space CP1 ↪→ CH2k+1 → HHk HP

Quaternionic Type, m = 3, n = 4k

3-Sasakian Manifolds HP

Torus bundle over hyperkähler manifolds CP

Quaternionic Heisenberg Group, Hopf, and Anti-de Sitter Fibrations CP/HP

Octonionic Type, m = 7, n = 8

Octonionic Heisenberg Group, Hopf, and Anti-de Sitter Fibrations CP/HP

H-type Groups, m is arbitrary CP
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Curvature Dimension Inequalities

There is the notion of Curvature Dimension Inequality

‖∇2f ‖2 + Ric(∇f ,∇f ) ≥ 1

n
(∆f )2 + ρ‖∇f ‖2

This is known to be equivalent on a Riemannian manifold to a
Ricci lower curvature bound.

Interestingly, many of the Riemannian results of interest that
classically follow from Ricci lower curvature bounds can be
proved directly from this inequality.
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Generalized Curvature Dimension Inequality

The CDI cannot hope to hold on sub-Riemannian spaces because
of the explosion of the Ricci curvature; the Generalized Curvature
Dimension Inequality

‖∇2
Hf ‖2 +ν‖∇2

V f ‖2 ≥ 1

n
(∆Hf )2 +

(
ρ1 −

κ

ν

)
‖∇Hf ‖2 +ρ2‖∇V f ‖2

was introduced by Baudoin and Garofalo to address precisely this
pathology.

The Yang-Mills property with a horizontal Ricci lower
curvature bound is sufficient to imply the GCDI.

From this, we can recover several classical results.
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Clifford Structures

The relation

JZ1JZ2 + JZ2JZ1 = −2g(Z1,Z2) Id

holds, which implies that we can extend the J map to the Clifford
algebra Cl(V).

We derive a classification of H-type submersions with
horizontally parallel Clifford structure Ψ: V × V → Cl2(V)

(∇B
W J)Z = JΨ(W ,Z)

It must hold that for some κ ∈ R,

Ψ(u, v) = −κ(u · v + g(u, v))
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Classification of H-type submersions with horizontally
parallel Clifford structure, κ > 0

M B Fiber rank(H) rank(V)

Twistor space Quaternion-Kähler with positive scalar curvature S2 4k 2
3-Sasakian Quaternion-Kähler with positive scalar curvature S3 4k 3
Quaternion-Sasakian Product of two quaternion-Kähler with positive

scalar curvature
RP3 4k 3

Sp(q++1)×Sp(q−+1)
Sp(q+)×Sp(q−)×Sp(1) HPq+ ×HPq− S3 4(q+ +q−) 3

Sp(k+2)
Sp(k)×Spin(4)

Sp(k+2)
Sp(k)×Sp(2) S4 8k 4

SU(k+4)
S(U(k)×Sp(2)U(1))

SU(k+4)
S(U(k)×U(4)) RP5 8k 5

SO(k+8)
SO(k)×Spin(7)

SO(k+8)
SO(k)×SO(8) RP7 8k , k ≥ 3,

k odd
7

Spin(k+8)
SO(k)×Spin(7)

SO(k+8)
SO(k)×SO(8) S7 8k , k = 1,

k even
7

Exceptional cases
F4

Spin(8)
F4

Spin(9) = OP2 S8 16 8
E6

Spin(8)U(1)
E6

Spin(10)U(1) = (C⊗O)P2 S9 32 9
E7

Spin(11)SU(2)
E7

Spin(12)SU(2) = (H⊗O)P2 S11 64 11
E8

Spin(15)
E8

Spin+(16)
= (O⊗O)P2 S15 128 15
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Diameter and first eigenvalue estimates

The horizontally parallel Clifford structure moreover implies a
horizontal Einstein condition

RicH(X ,Y ) = κgH(X ,Y )

Applying the GCDI, we recover on H-type foliations with
horizontally parallel Clifford structure:

Bonnet-Myers type diameter bounds

Lower bounds on the first eigenvalue for the sub-Laplacian

These results are purely sub-Riemannian, in the sense that they are
independent of a choice of V.
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Comparison theorems in the limit

We now consider a different approach, recalling the penalty metric

g = gH ⊕
1

ε
gV .

Fix p ∈M, and define

rε(q) = dε(p, q) = inf
γ∈C(p,q)

∫
γ
‖∇γ(t)‖εdt.

Where C (p, q) is the collection of curves connecting p to q.

On compact sets, we have uniform convergence

dε(p, q)
ε→0+

−−−→ dcc(p, q)
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Metric Connections, Jacobi Equation

We proceed by recovering a Jacobi equation for variations of
geodesics.

The Bott connection will no longer suffice since its adjoint

∇̂B = ∇B + TB

is not metric.

We introduce for any ε > 0 the metric connection with metric
adjoint

∇̂εXY = ∇XY +
1

ε
JXY .

For a gε-geodesic γ, the Jacobi equation in this setting is

∇̂εγ̇∇εγ̇W + R̂ε(W , γ̇)γ̇ = 0
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The Comparison Principle

Theorem (Baudoin, Grong, Kuwada, & Thalmaier ‘17)

Let x , y ∈M,

γ : [0, rε]→M a unit speed gε-geodesic connecting x , y , and

W1, · · · ,Wk be a collection of vector fields along γ such that

k∑
i=0

∫ rε

0
〈∇̂εγ̇∇εγ̇Wi + R̂ε(Wi , γ̇)γ̇,Wi 〉ε ≥ 0

then at y = γ(rε) it holds that

k∑
i=0

Hess∇̂
ε
(rε)(Wi ,Wi ) ≤

k∑
i=0

〈Wi , ∇̂εγ̇Wi 〉ε

with equality if and only if the Wi are Jacobi fields.
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Horizontal Splitting

We introduce an orthogonal splitting of the horizontal bundle.
Fixing a vector field Y ∈ H,

H = span(Y )⊕HRiem(Y )⊕HSas(Y )

where
HSas(Y ) = {JZY |Z ∈ V}

HRiem(Y ) = {X ∈ H|X ⊥ HSas ⊕ span(Y )}

Lemma

Denoting n = rk(H),m = rk(V), we will have

dim(HSas) = m, dim(HRiem) = n −m − 1
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Comparison Functions

Simliarly to the Riemannian case, we consider the comparision
functions

FRiem(r , κ) =


√
κ cot(

√
κr) if κ > 0

1
r if κ = 0√
|κ| coth(

√
|κ|r) if κ < 0

FSas(r , κ) =


√
κ(sin(

√
κr)−

√
κr cos(

√
κr))

2−2 cos(
√
κr)−

√
κr sin(

√
κr)

if κ > 0
4
r if κ = 0
√
κ(
√
κr cosh(

√
κr)−sinh(

√
κr))

2−2 cosh(
√
κr)+

√
κr sinh(

√
κr)

if κ < 0

These comparison functions will correspond to the splitting of H.
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Hessian Comparisons

Theorem (Baudoin, Grong, Rizzi, & M. ‘19)

Let γ : [0, rε]→M be a gε-geodesic. Then

Hess(rε)(γ̇, γ̇) ≤
‖γ̇‖2

(
1− ‖γ̇‖2

)
rε

If Sec(X ∧ Y ) ≥ ρ > 0 for all unit X ,Y ∈ HRiem(γ̇), then

Hess(rε)(X ,X ) ≤ FRiem(rε,K )

If Sec(X ∧ JZX ) ≥ ρ > 0 for all unit X ∈ HSas(γ̇), then

Hess(rε)(X ,X ) ≤ FSas(rε,K )

Where K is a constant depending on ρ, ε, ‖∇V rε‖, and ‖∇Hrε‖.
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Proof Sketch: Sasakian Hessian Comparison

Let’s consider the Sasakian case.

Fix p, q /∈ Cutε(p) and let γ be the length-minimizing
geodesic connecting p to q.

Let X ∈ HSas(γ̇); then there exists some Z ∈ Γ(V) such that

X = JZ γ̇

Define Z⊥ = Z − gε(Z , γ̇)γ̇, and let

W (t) = a(t)JZ γ̇ + b(t)Z⊥

for some undetermined functions a(t), b(t).
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Proof Sketch: Sasakian Hessian Comparison

We set initial conditions a(0) = b(0) = b(rε) = 0, a(rε) = 1.

Assuming constant sectional curvature ρ and setting
K = ρ‖∇Hrε‖2 + ‖∇V rε‖2, we find that W (t) will be a
Jacobi field if and only if

äε+ ḃ + a(εK − 1) = 0

b̈ − ȧ = 0

Explicitly, the general solution for rε <
1

2π

√
K is

a(t) = C1 cos(
√
Kt) + C2 sin(

√
Kt) + C3

b(t) = C1
sin(
√
Kt)√
K

+ C2
1− cos(

√
Kt)√

K
− C3εKt + C4



Background Connections on Foliations H-type foliations Comparison theorems Ongoing Research

Proof Sketch: Sasakian Hessian Comparison

Applying the Comparison Principle,

Hess(rε)(X ,X ) ≤
√
K

sin(rε
√
K )− (1− εK )rε

√
K cos(rε

√
K )

2− 2 cos(rε
√
K )− (1− εK )rε

√
K sin(rε

√
K )

Observing that the above expression always has negative first
derivative with respect to ε, we conclude

Hess(rε)(X ,X ) ≤ FSas(rε,K )
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Diameter Estimates

Theorem (Baudoin, Grong, M., & Rizzi, ‘19)

Let κ > 0. Then for unit X ∈ H,

1
RicRiem(X ,X )

n −m − 1
≥ κ =⇒ diam0(M) ≤ π√

κ

2 Sec(X ∧ JZX ) ≥ κ =⇒ diam0(M) ≤ 2π√
κ

3
RicSas(X ,X )

m
≥ κ =⇒ diam0(M) ≤ 2π

√
3√
κ

and in each case the fundamental group of M must be finite.

The first two of these are sharp, as they are achieved in the
complex, quaternionic, and octonionic Hopf fibrations.
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sub-Laplacian

Similarly to the horizontal Ricci curvature, we can define the
sub-Laplacian as the trace of the Hessian. For the distance
function rε along a geodesic γ with Y = ∇Hrε,

∆Hrε =
n∑

i=0

Hess(rε)(Wi ,Wi )

= Hess(rε)(Y ,Y ) +
m∑
i=0

Hess(rε)(JZi
Y , JZi

Y ) +
n−m−1∑
i=0

Hess(rε)(Wi ,Wi )

for appropriate bases {Wi} of H and {Zi} of V. This splitting
corresponds again to the decomposition

H = span(Y )⊕HSas ⊕HRiem
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Laplacian Comparisons

In each component of the horizontal decomposition we can use the
previous comparisons on the Hessian to obtain

Theorem (Baudoin, Grong, M., & Rizzi ‘19)

Let (M, g ,H) be an H-type foliation with parallel horizontal
Clifford structure and satisfying the J2 condition, and with
nonnegative horizontal Bott curvature. Then there exists a C > 4
such that

∆Hr0 ≤
n −m + 3 + C (m − 1)

r0

This is not sharp, but we can recover sharp estimates in each
subspace.
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Horizontal Holonomy (with F. Baudoin)

We explore a notion of horizontal holonomy on H-type
foliations, naturally associated to the Bott connection.

On H-type submersions we can identify the horizontal
holonomy with the Riemannian holonomy of the base space.

From this one recovers a Berger-Simons-type classification.



Background Connections on Foliations H-type foliations Comparison theorems Ongoing Research

Index theory for sub-Laplacian on H-type manifolds (with
F. Baudoin and E. Grong)

On H-type manifolds we can consider the Dirac operator

Dε = d + δε

associated to the Riemannian penalty metric gε = gH ⊕ 1
εgV .

By considering the limit ε→ 0+, we can achieve a notion of
index for the sub-Riemannian Laplacian

∆H = lim
ε→0+

∆ε = lim
ε→0+

D2
ε
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Gauss-Bonnet theorem for surfaces in sub-Riemannian
manifolds (with E. Grong)

For a surface Σ embedded in a H-type manifold (or further
generalization), we seek to define a notion of Gaussian and
geodesic curvature in the ε→ 0+ limit.

One then formulates a sub-Riemannian Gauss-Bonnet theorem
in terms of these quantities that recovers topological
information about the surface.
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New projects

Connections on foliations

Cheng-type rigidity theorem on Sasakian manifolds (with L.
Rizzi)

Observability and controlability of Schrodinger-type operators
on H-type manifolds (with C. Fermanian-Kammerer)
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